
Rooting the Cradlepoint IBR600

And other stories...

Dawin
@dschmidt0815

Sébastien
@vegantransistor

http://www.twitter.com/dschmidt0815
http://www.twitter.com/vegantransistor

2

 Agenda

● About us

● The device

● Main story: getting root privileges

● Firmware upgrade

● Cloud connectivity

– Registration vulnerability

– Deserialization vulnerability

● Conclusion

3

 Cradlepoint IBR600

“Semi-ruggedized router with GPS and public safety support for
mission-critical IoT”

● WiFi, LTE Modem
● LAN & WAN connections
● Cloud services (Netcloud) for device

management
● Internal web-server
● Many of them are directly accessible from the

internet

Large attack surface

4

 Related Work

https://packetstormsecurity.com/files/150203/Cradlepoint-Router-Password-Disclosure.html

● A hardcoded password allows you to retrieve sensitive information,
including the default password

● Escalate privileges using a backdoor account with a hardcoded
username and password

● Passwords that are encrypted using a hardcoded key

Fixed

Fixed

Fixed

Lots of hardcoded credentials were used

https://packetstormsecurity.com/files/150203/Cradlepoint-Router-Password-Disclosure.html

5

 Open the box

Modem

Microprocessor
Qualcomm IPQ4018

DDR3 SDRAM

NAND Flash

NOR Flash (on the
other side)

Power Supply

6Secure boot is not in place, firmware modifications are possible

 uboot UART
● At first, UART is not talkative at all :-(

● NOR Flash dump with Bus Pirate and
flashrom

● uboot silent mode used

● Secure boot is not in place, we can modify
uboot environmental variables

● We get a uboot console

UAR
T

7Firmware is not encrypted in flash

 NAND flash dump – rootfs
● NAND Flash is more complicated to dump

● By recording the NAND flash SPI bus during the boot phase, we can extract
the Linux kernel and rootfs

● Rootfs is in squashfs format

● Middleware is in Python

$ binwalk rootfs.cradl

DECIMAL HEXADECIMAL DESCRIPTION

--

0 0x0 Squashfs filesystem, little endian, version 4.0, compression:xz, size: 18464354 bytes,

2026 inodes, blocksize: 262144 bytes, created: 2022-xx-xx 18:01:34

8Python in an embedded device

 Python Middleware

● Python bytecode is used
● Can be decompiled (e.g. with
decompyle3)...

● … and recompiled.
● Here is a script to enable silent mode at

startup

9Root shell can be called via a protected command

 CP Shell
● Custom shell implemented in Python called cpshell

● Accessible via SSH or web interface
● Very limited (not a linux shell)
● Protected sh command that spawns a root /bin/sh

● Patch the firmware to enable the sh command

10

 Patching Python bytecode

● Decompiling cpshell.py with decompyle3 is not
error free :-(

► Disassemble the code with pydisasm and find
the right place

► Find the opcodes (version!)

► Patch the .py file (binary) to change the branch
behavior

Work around to patch Python bytecode

11OpenWRT provides images for many different routers

 Flash the new firmware with openWRT

● Boot uboot
● From the uboot console, choose boot

with tftp
● Load the openWRT image into SDRAM
● With the ubi tools, flash the firmware

image

$ ubiattach -b 1 -m 1

$ ubiupdatevol /dev/ubi0_0 -t

$ ubiupdatevol /dev/ubi0_0 /tmp/kernelimage

12

 Root shell

End of the first story.

13

 Firmware Update
● Firmware update via web-server or scp (for newer FW, only via cloud)
● Some older firmware update images can be downloaded
● Firmware update image is encrypted...
● But we have the rootfs, some simple obfuscation is used

Global key is used for firmware encryption

14Secure update is broken

 Firmware Update

● Now we have a decrypted firmware update image
● Firmware update image has an unprotected header with a

version string
● Image is signed... but
● For versions < 7.0.0, signature verification is skipped

Body

Header
Vx.x.x

Signature

15

 Sniff the cloud communication

● Connection to Netcloud is protected by
TLS

● Device has no secure boot & we are root,
so that we can:
● Add our own root certificate to the

trusted store
● … and use mitmproxy to decrypt the

trafic

Trusted store is not protected > TLS traffic can be decrypted/manipulated

16Deserialization in python is dangerous

 Deserialization vulnerability
● By analyzing the traffic, we found a Python base64 encoded pickled stream

{'command': 'post', 'args': {'queue': 'license_sync', 'id': 'xxx',

'value': {'success': True, 'data': 'gAJ9[...]=.'}}}

● Pickle is dangerous

● A simple way to get RCE on the server
(we control the data stream)

https://davidhamann.de/2020/04/05/exploiting-python-pickle/

https://davidhamann.de/2020/04/05/exploiting-python-pickle/

17W/o client certificate, device authentication is tricky

 Cloud registration vulnerability
● In the Python code, we found a function called insecure_activation (!)

● With the result of this function, and using a valid MAC address (found e.g. in a
picture of a market place), we could get a valid Netcloud authentication token

● With this token, we could disconnected any device from its Netcloud account

18https://github.com/vegantransistor/Rooting-the-Cradlepoint-IBR600

Conclusion

● We communicated our results to Cradlepoint on 2023-01-05
● Acknowledgments to the Cradlepoint team for their prompt and professional

reaction
● Vulnerabilities have been patched...

● but Secure Boot can't be patched
● Embedded security is fun

● Many different topics, from hardware to cloud via os and networking
● Many different device architectures

● More on github:

https://github.com/vegantransistor/Rooting-the-Cradlepoint-IBR600

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

